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ELECTRON GAS IN A MAGNETIC FIELD

Ye. M. Lifshits

The kinetic equation is derived for a gas con- 390%
sisting of charged particles in a magnetic field.
This equation is used to determine the relaxation time
for establishing Maxwell distribution in this gas as
well as its thermoconductivity. A bundle of charged
particles -- plane and cylindrical -~ is investigated.
The dependence of the bundle width on time is determined
by means of this equation.

This article investigates certain static properties of a gas consisting
of charged particles in a magnetic field. For this purpose, the kinetic equa-
tion is derived which determines the distribution function of the particles in
this gas. This equation may be employed to determine the relaxation time for
establishing static equilibrium with respect to the particle velocity, i.e.,
the time required to establish Maxwell equilibrium [formulas (18) and (19)].
The thermoconductivity of this gas is also determined [formula (28)]. A
bundle of charged particles directed along the magnetic field is studied. This
bundle will be expanded under the influence of Coulomb interaction between the
particles. The dependence of the bundle width on time is determined [formulas
(31) and (32)].

1. Kinetic Equation

A study performed by Landau(l)derived the general kinetic equation for a
gas, whose particles interact with each other according to the Coulomb law.
Let each particle be described by the quantities P> i =1,2 (the components of

the particle impulse were described by these quantities in I)- n(pi) is the
distribution function of the particles with respect to the values of P, When
two particles collide, the quantities 1 and pi which determine them change,
respectively, into 12 + Api and pi + Api. During the Coulomb interaction of

particles, only those collisions between particles are important for the kinetic
equation in which Py and pi change very little —- i.e., Api “py» Api <<pi

(see I).

Let dW by the probability (per unit of time) for the collision of a particle
with the values 1 with a particle having valuesg{during which Py and pi change

into p; + Api and pi + Api. The product de(pi)n(pi) is the number of such

collisions (per one second). dW may be written in the form dW = wdr‘dTA,

e = - - - - - -

Numbers in the margin indicate pagination in the original foreign text.

(1 L. Landau, Sow. Phys. 10, 154, 1936, This is designated as I below.



where w is, generally speaking, the function of P> pi, Api, Api, and

dt' = dpl'dpz'...dTA is the product of the differentials of the parameters

determining the collision.

The kinetic equation is then

on , 9j;

— —i =0

ot + op; &
(summation is everywhere indicated by a sign which is repeated twice), /391

where ji is the flux components in p, — space, which equal the following

according to I

Ap. . on | Apdp on'
ji=— f d’c’d‘cA’(ﬂ{ Apibpy A W B’——n————, (2)

[we may write n' = n(pi)].

Let us now turn to a gas consisting of charged particles, in which we
are interested (with the charges e and the masses m) in a uniform magnetic
field H. We shall select the direction of the field H as the z axis. If we
abstract from collisions between particles, the motion of each of the particles
in this field may be determined by the equations of motion

;V.—CU_}.’:—O, j-~—}-m;'c=0, Z:‘O, (3)
where
eH
=T (4)
(c - speed of light). The solution of these equations is
x =X+ rcos(wt-}+a), y=7Y—rsin(ef4a); z=wu,t -} const. (5)

o is the initial phase which depends on the selection of the origin of time,
and X, Y, v, T are constants. Thus, each particle moves along a spiral line

with the radius r and with the axis parallel to the z axis. The quantities
X, Y are the coordinates of the spiral line axis. The particle velocity along
the direction of the field is v, The particle velocity in a direction

perpendicular to the field, which we may designate by v, equals
V== ro. (6)

The total particle velocity if \/vz +-v22.

We may select the terms X, Y, v, >V as quantities describing a particle.

The distribution function is n(X, Y, Vs v). We must set Py SV, Py TV_»

Py = X, P, = Y in (2). However, the kinetic equation itself (1) must now be
written in a somewhat different manner. When (1) and (2) were derived, it
was assumed that a volume element of p,-space equals dt = dpl dpz... The

elements Vv, Vo, X, of Y-space equals}dT =vdvd v, dX dY, since v and v,

2



are the cylindrical coordinates for velocity.

Therefore, in order to directly transpose (1) and (2) to our case, we
would have to select the variables X, Y, v, v2/2 for which dt = dXdedeVZ/Z.

Taking the fact into account that
i 1 o0
Ag=rdhv, =75
2

we may readily see that equation (1) may be expressed as follows in the case

of the variables X, Y, v, v,:

7 dj di 1 &w
on :c vz v
—— =0 (7
+ + 0,0 4
where the flux components are determined by equations (2), just as previously.
We must now determine the changes Av, sz, AX, AY and Av', ... of the/392
quantities v, Vs X, Y and v', ... when two particles collide. The eguations

of motion for a particle, with allowance for its interaction with another
particle, are
1 oU 1 U - 1 oU

Xoey= o g YRR = Gy T T W oz

(8)
where U is the potential energy of interaction. Let us solve them by successive
approximations. 1In the zero approximation, we have equation (3) with solution
(5). 1In the first approximation, we must substitute the unperturbed solution

in the right hand side of equation (8) —- i.e., (5) —- and a similar solution
for the second particle.

We have the following from the third equation of (8)

v, _——~— f———lif

The total change in v, during a collision is
-+

1 U
Av, = d 9
2 m 0z £ (9)

-—_c0

The solution of the first two equations may be written in the form (5),
where X, Y and v are the variables, however. In order to find AX and AY, let
us rewrite (5) in the following form

x Y ey X
x=X o y._.Y—f-w.

Differentiating once with respect to time we have

T . o (10)
oX=y-}ax, oV=oy—x



and substituting (8), we obtain

X'—_— -_.._1_ _aU , Y-——--l_‘ _ag_
me 0y me 0x
Thus the changes are:
1
_— el —_— ——dt. (11)
A =—a ay at, AY me ox
—o0 — 0
Finally, in order to find Av we have
,02=,;2+)}2,
from which we have o
vv=xx-+yy,
or, substituting X and y from (10), we have
w= Xi-+Vy
In the desired first approximation for v, we must substitute v = rw, 393
and ¥ and ¥ from the zero approximation (5), i.e.,
% =— ro? cos (0t +a), y=rosin (of-]-a).

Utilizing the results obtained as well,

ouU ; ou
mu)X———-W, moyY — —0—;-,

we obtain
. 1 dU 1 U
— e 2 Y ¢ ,
v= % sin (of 4-a) + 3 cos (of +a)

from which we have

-+ o0
=7;—f {——sm(mt [—a)+-—cos(wt—{—a)} (12)
The potential energy of the Coulomb interaction of both colliding particles
is o2
T — P =Y R =2
or

U=e‘-’{[(X—X’)—}—%cos(wt—{—a)—% cos (wt+a’)]g—{—
v o o /s (13)
+ [(Y—-—- Y')-—-—(; sin (mt—[—a)—f—;)—sin(mt—}—a’)] —{—(vz—~—vz’)2t2} .

We have thus substituted the unperturbed trajectory of motion (5) and the
corresponding motion for another particle. The origin of time is taken as the
moment when the particles pass by each other; a- and a'- are the phases at the

4



time of collision.

Substituting (13) in (9), (11) and (12), making the substitution wt = u,
we obtain
o T [(Y—Y)o—wvsin(u+a)+ v sin(e—a')] duf/{ (X — X))o
AX = -'% +wvcos(u+a)— v’ cos (e4-0)]2F-[(Y — V') o —vsin(z }- a)+-

oo + ¢ sin (a4 o) 4- (v, — v,/)2 u2 |
4+ oo
3 X—X cos (¢ -+ a) — v cos (u |- a’)} du
AY—_—%f _lx—x )wiz_s_@_;-;/ cos(utadide =\,
(14)
20
A'U:—’n" >\

j‘w —(X—X)o ;ini(zfjqu) —(Y—Y)wcos(u+-a)+ v sin(a — a’)} du

{ )"

-

+ oo
20 u(v,—v,/)du

nd

— o

Ay, =

The quantities AX', AY', Avé, Av' are obtained directly by replacing /394
the primed quantities by the non-primed quantities, and vice versa. We
apparently have

AX/ —= —AX, AY —= —AY, A’Uz’= - Av,. (15)

The phases o and o' are the parameters determining the collision. In-
tegration in (2) must be performed over them, where we must write

dz, =dada’.
In view of the conservation of energy during collisions, we have
vAv -+ AV + v,/ Av,” |+ v, Av, = 0.

Keeping this in mind, we may readily see that the Maxwell distribution
satisfies equation (1), namely: each of the flux components ji vanishes (2).

In one second, a particle v, Vs X, Y apparently undergoes Ivz - v;|n'dT'
dTA collisions with the particles v', v;, X', Y', which are accompanied by a
change in their coordinates and velocities for specific sz, ... Consequently,

we have
w=|v,— v, . (16)

In connection with equations (1) and (2), we must make the following
statement. When these equations were derived in I, the authors made use of
the fact that the probability of collision with the transition P, > P; + Api,

pi - pi + Api equals the probability of the inverse transition p; + Api > Py
pi + Ap{ -> pi. However, this changes somewhat in a magnetic field, due to the



fact that when the sign of time changes, the sign for the magnetic field must
change. Therefore, the probability of the direct process equals the probability
of the inverse process in the opposite field direction. Due to this fact,

when equations are derived for ji’ generally speaking, terms of the first

order in Api do not vanish (see I). However, it may be shown that these

terms all vanish in the cases considered below.

2. Relaxation Time

Let us examine a gas composed of charged particles in a magnetic field.
We shall assume that the linear dimensions of the gas D are large as compared
with the mean radius of the spiral line of the particle thermal motion, i.e.,
v, VAT
Do . 17
b=> - efl (17)

(k - Boltzmann constant, T - temperature). We shall employ the term v to

designate the mean thermal velocity of a particle: v, %\/kTIm.

Let us determine the relaxation time, i.e., the time required to establish
Maxwell distribution of the gas under consideration (distribution of particles
over the coordinates, i.e., gas density, is thus uniform). The desired time
may be determined by those terms of the kinetic equation which contain jV and

i

vy

The relaxation times for establishing equilibrium with respect to the
velocities v and v, == i.e., perpendicularly and parallel to the field —- are
different.

Let us determine the relaxation time for equilibrium with respect to the
velocity v. For this purpose, we must determine the order of magnitude of

the term 1 3 vjV in (7). There are three terms in jv with the products /395
v oV
AvAXlAVAVZ (Av)”. An examination shows that the first of these terms is ex-—

ponentially small (as e—Dw/VO), and the second is small as compared with the
3
third logarithmically (by a factor of f4n ™o ). Therefore, only the term
2
ely

with (Av)2Z is important.

An investigation shows that in the case of d »>vo/m [d =\/(X - X2 ¢+

4+ (Y - Y')2 is the distance between colliding particles] Av is exponentially
small. In the case of d vo/w (i.e., for d ~ v/w), as may be seen from (14),

we have

v 2w
I ——— e
mv|v,—uv,/|



When this ekpression is substituted in jv’ the integral with respect to

[vz - v;f diverges logarithmically. This occurs due to the fact that for small

lvz - Vél Av is large, and the formulas derived lose their applicability. We
may take the following as the lower integration limit with respect to IVZ - Vé!

e%n et

’ —
|v,—7, lNWN ET °

and vy as the upper integration limit.

When determining jv’ we must keep the fact in mind that v %\/kT{m , and

integration over dX' and dY' is performed in the region v/w. We then have
dj,, einv . ”ll/n (% T),'I2C
o wh(kT)" e H

where v is the gas density, i.e., the number of particles per unit of volume.
According to the kinetic equation, we must equate ajv to 9n. The derivative

v ot
o9n v n  where t, is the desired relaxation time. We thus find
B A ()
evin m”(kT) h‘i (18)

SH
Let us now determine the relaxation required to establish equilibrium
with respect to the velocities v, along the field. An examination of the

integral determining sz [see (14)] shows that sz is exponentially small in

Vg (as e_Dw/VO

- !
the case of d >»> ) and also for ‘vz—v;l (as e VO/[VZ Vzl). Tn the

case of dw ~ v, and |vZ - v;| Ny

0 , we have

0
2w €20
~

A’Uz: W::TT— .

Similarily to (18), we find the following by means of this expression

s /s

z pampany
v ely

It may be seen from a comparison of (18) and (19) that equilibrium with
respect to the velocities v perpendicular to the field is established more
rapidly than with respect to the velocity v, parallel to the field.

Substituting numerical values, we have /396
T'/:
tv = 3 ’
T /2
In10 —r
Y H
T



In the case of H ¥ 1000 gauss, T & 10,000°, v X 108 cm~3

£, ~10-8 sec. tt‘zN 10 2 sec.

It is difficult to compare these quantities with experimental data, sinece
there are no accurate data pertaining to a purely electron (without ions) gas
in a magnetic field.

3. Thermal Conductivity

We shall assume that in each small volume of the gas to be studied Maxwell
distribution has already been established. However, only the gas density and
its temperature are different in different locations. We shall thus assume
that the gas is non-uniform in one direction, which we shall select as the x
axis. The density and temperature are functions of the coordinate X and the
time t. Thus, we may write n in the following form

Y,  mrdol)
ve " TT@RT O, (20)

3)

m
"=2“(m—r)
where T = T(X,t) and v = v(X,t) (v is the number of particles per 1 cm

In order to find the equations determining V and T, we shall proceed as
follows. We shall integrate (7) from both sides over vd vd vde with respect

to all possible values. It is trivial to integrate over dY, since

nothing depends on Y, and it yields simply the gas dimensions along the y axis

which are reduced in both directions (7). The terms 1 3dvjy and 3j,, of the
z

v
ov sz
integration thus vanish (since jV = jV = 0 at the limits), and we find:
z
—a‘zt— ndtv=~—é%fjjd—uv, dt, =wvdvdy,
or, substituting (20) in the left hand part, we obtain
v 7] ,
—To —ox,) Ja % (21)

Multiplying (7) from both sides by the energy € of the particle

[e = %(vz + szi] and integrating over drv, we obtain

—-——gt—fne drt, = ;X—fj‘”e dr-v—fm'vzjvzdr,——fmvjad'fw

or, substituting in the left hand side of (20), we obtain

_%f%'.tfl___ _o‘.’)_{.f'med:ﬂ_fmvzi%drv--. fmvj,dr,,. (22)
We may substitute the expression for j_ from (2) in (21). As may 397
Y X =

be seen from (2), jX consists of three terms (corresponding to k =1, 2, 3),



containing AXAv, AXAVZ, (AX)Z, respectively. An examination shows that the
first two are exponentially small. Collisions at large distances (d >>v0w)

play a role in the third term, which is verified by the final expression for
3y In the case of d >V the first one of formulas (1l4) yields

-}- oo
e (Y—Y)odu _ 2 (Y —Y) (23)
m ) [d2e? - (v,—, )2112]’/1 d?om |v,— v, |
We obtain the following from (12) for jX [assuming that w = Ivz - vé‘
see (16) —— and that AX' = - AX]:

, Yo, (AX)2 | an’ on
jw=f]'vz-—vzl 2) n=e n’ 3% d<da da’.

Integration over dg da' yields 4n2, In addition, let us substitute (23)

and let us integrate over dY'. Since the gas dimensions are large, and the in-
tegral with respect to dY' converges, let us integrate from -« to +». We obtain:
4mdet dX'dx, < on’ 6n>
joom | v o= — 24
Jo= et ) 1 X — X[ [v,— 5 ]\ 0X oX (24)

The integral with respect to dv; diverges logarithmically for small
,V - V"- This is related to the fact, which was already mentioned, that for
small lvz - v;l AX is large, and the formulas derived are not applicable.
Therefore, the lower integration limit with respect to Ivz - v;} may be selected

at the point where AX ¥ X, i.e., where

2
v~ ¢
17— 00 1= ‘meD?

When substituting the expression (20) for n in (24), we encounter the following

integral, for example me,

~ KT K

, V7 ! f
[T' = T(X')]. The integrand is large for v, which is close to v;, and rapidly
decrease v' gl KT
s after z Therefore, we have
my . mv
e "kT' e d(v ek 2
dv, == 26~ W (___\lzge T DoeDPm
fvo.—v,/| (v, —,) e?
e?
mwD*

Finally, substituting the expression (20) for n in (24) and substituting

jx in (21), after the computation we obtain
o 2’/n1t‘/ae4 (m/’zT)’/sz‘2 ax’

— - X X
ot m'r w2 e 0X [IA—*X leT+kT’ (25)

X{z,_a.v;_vf ﬂ]__v{_ oror ;
ox’ 0X T+ T \ox ox)|"



The same procedure may be followed for equation (22). It is thus found
that the third term to the right is logarithmically small as compared with the
first (by a factor of In mD/VO), and the second is smaller by a factor /398

of In (mkT)? wD?/e2. We shall disregard both of these terms. Utilizing the
expressions which we obtained for v/3t, after the calculation we obtain

_—_— Y =

ot

_ it (mkT)VhwD? 9 dx’ [ 2 <v N __y 0v> sy (26)
T w2k 2 X)) [ X—X|(TF7Tys| 38\ ox oxX

4 4
W [ir_ 37“2—-3—; (572 16772 8TT’)] }

+37FT)| ox
Let us expand the integrand with respect to (X - X'). 1In the first
oT' =
ox'

= %%-, v = v' , etc. The first term (with the derivatives of density) in this
approximation vanishes, i.e., it is less than the second (with the derivatives

approximation, this may be reduced to the fact that we assume T = T',

of temperature). In addition, the following integral remains
D
ax’ d(X—-X’) —21n 93
IX X’| X=X v,
v/

As a result, we obtain
07’ 1 0 { 16x%224v2 Dw wD‘Mﬂ 1 dT}

(27)

ot v oX | 3mw? ~In v, In e? VkT oX

This is the customary equation of thermal cohductivity
ar _ 0 852:
Co5F Tox \' 9%

where Y is the thermal conductivity coefficient, and e, = %‘vk is the heat

capacity (for a constant volume). We have the following expression for the
thermal conductivity coefficient
8xrevec2m' sk n eHD HD3 (kT

§ = = —— In
1 HV'T eV mkT cem'lz (28)
(we have substituted w = EE'). Numerically, we have
mc
- v2
b=10"" n 50 ﬁQm 3. 10°HDT: — 8 .,
pf7' °Cen- sec.
H is given in gauss, T - in degrees, D - in cm, and v is given in cm

Let us compare the quantities %- %ﬁ- and %- %%—. We saw that in equation

(26) for %%- the term with the derivatives of temperature was %2' times
0

greater than the terms with the derivatives of density, which were therefore
disregarded. In equation (25) for dv , all the terms vanished in the case of
ot

10



v=v', T=T', etc. Thus, 1 gﬁ-is in Dw times smaller than-l T
v ot vy T 3t
Consequently, we arrive at the result that the temperature is equalized in a

gas more rapidly than the density.

/399

4. Bundle of Charged Particles

Let us now investigate a bundle of charged particles which is directed
along a magnetic field (this direction is again selected as the z axis). In
each cross section, the bundle density depends on the X and Y coordinates.

We shall employ D to designate the order of magnitude of the bundle thickness.
It is assumed that the inequality (17) is satisfied for D, just as previously.

The bundle is non-uniform along the z axis. However, instead of examining
a bundle which is non-uniform over all three directions, we may examine a
certain section of the bundle (along its length) in a coordinate system which
moves along with it -- i.e., with a velocity equalling the bundle velocity.
In this system, the particles have only thermal motion. We then have a gas
which is uniform along the z axis, and is not uniform along the x and y axes,
whose density depends on time, however. We shall proceed as follows.

At the end of section three, we found that the temperature is equalized
more rapidly than the density. Therefore, we shall assume that the bundle
temperature has already been equalized, i.e., T = const. Let us write the
equation for 9v . It will now differ somewhat from (25), due to the fact that

ot
the bundle is not uniform along both the x and y axes. 1In this connection,

9] . . . . . R .
the term Jy  also remains in the kinetic equation (7), and terms with deriv-
oY
atives with respect to Y remain in the fluxes jX and jy . The expression for

AY differs from AX (23) only in the fact that (X - X') appear, instead of
(Y - Y'") [see (14)]. As a result, we obtain the following equation

o 8wtet  (mkT*eD? | 0  dX' dY’
TU T mrer Y ET & oX f WX =X (-7 <

(29)
Y——Y’)2<v5—)——;;,——_v’%)—()’——)”) (X—X) (v%;“v'g_;)}jug}_,f. : }

The second term in the parentheses differs from the first term by the trans-
position of X and Y. It is naturally impossible to integrate over dY' here,
since v is a function of Y.

In the solution of this equation, one dimensional constant must be con-
tained in it, in addition to the constant which it already contains. The
integral fv dX dY = N 1is the total number of particles in the bundle pertaining

to a unit of its length along its direction (z axis). N has the dimensionality

11



cm—l. The density v must have the form v = NF (X, Y, t), where F is the func-

tion with the dimensionality cm=2, Substituting this in (29), we find /400
that only one dimensional constant is included in the equation which results:
et N |y (mkD)*o D2
m" w2 ]/7—" e? -

Let us examine a bundle with cylindrical symmetry, i.e., a bundle in which

v is only a function of the distance r up to the bundle axis (and of time).
X and Y must be expressed in equation (29) by means of polar coordinates, and
integration may be performed over the polar angle. However, we may compile
only one dimensionless quantity from the dimensional constant indicated above
and the independent variables r and t

t et N (mET)" w D2

—_—— —In .

" mre) kT o

Consequently, v must have the following form

N AN (mkTy" o D2 ¢
V== — f : —— In C oy
r? m’ o>2|/k T e? ’
(the function F in v = NF may be written in the form F = f/rz, where f is the
dimensionless function).

(30)

Under the influence of Coulomb repulsion between particles, the bundle
expands with the passage of time. Let us determine the change in the thickness
D of the bundle with time, i.e., the width of the region outside of which the
density is very small. It may be seen directly from (30) that the dependence
of D on time is determined by the following formula

DAi__ D4 2 Nygle o2 Ve 2
____D_O_ = const ~ ¢ Nm__(i n (k1) HD . (31)
t H o/ kT em's ¢
where D, is the thickness in the case of t = 0. Instead of examining a gas

0
with a density which depends on r and t, as was indicated above, we may speak
of a bundle which is directed along the z axis. Then (31) determines the
change in the bundle width along its direction. Instead of t, we must write
the coordinate z which is divided by the bundle velocity.

A somewhat different result is obtained for a plane bundle. The bundle
is now very wide (theoretically infinite) and uniform along the y axis. In
each cross section, the bundle density depends only on X. The bundle is
symmetrical with respect to a certain plane (the yz plane). The equation for
%%— is now obtained from (25), assuming that T = const., or from (29), cancel-
ling the derivatives with respect to Y. The integral f vdX = N is now the total
number of particles pertaining to a unit of length along the bundle direction,
and along its width over the y axis. N now has the dimensionality 1

2
m
It is now found that the bundle thickness (along the x axis) changes with time
according to the following equation, in a manner which is completely similiar
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to that of a cylindrical bundle:

D — D%y eNm'sc? (T} DH (32)
— - const~4n (kTyu " weee

In conclusion, I would like to thank Doctor L. Landau for his advice and
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